Т. С. Шеромова

Ситуационные задачи с историческим содержанием по физике

7 класс

Учебно-методическое пособие для учителя физики

УДК 372.853 ББК 74.262.23 Ш49

Рецензенты:

- О. В. Коршунова, д. п. н., профессор кафедры педагогики Института педагогики и психологии Вятского государственного университета;
- **Н. В. Брендина**, заместитель директора по УВР, учитель физики МБОУ СОШ № 56 города Кирова

Шеромова, Т. С.

Ш49 Ситуационные задачи с историческим содержанием по физике : учебнометодическое пособие для учителя физики / Т. С. Шеромова. — Киров : ООО «Издательство «Радуга-ПРЕСС», 2021. — 97 с.: ил.

ISBN 978-5-6045718-3-5

В пособии представлена методика использования элементов историзма на уроках физики как средства формирования познавательных универсальных учебных действий обучающихся основной школы. Цель данной книги — обеспечение учителя физики информацией о разных методических приемах организации учебно-познавательной деятельности школьников в соответствии с требованиями ФГОС. Раскрыта технология использования текстов с историческим содержанием и конструирования на их основе физических задач разного типа (количественных, качественных, задач-оценок, экспериментальных). Пособие разработано в рамках проекта Вятского государственного университета «Педагогический потенциал ситуационных задач с историческим содержанием».

УДК 372.853 ББК 74.262.23

ISBN 978-5-6045718-3-5

© Шеромова Т. С., 2021

Оглавление

	Введение	6
	Необходимость применения ситуационных задач в обучении	6
	Понятие ситуационной задачи.	7
	Авторское определение понятия	7
	Педагогические условия.	8
	Предметная основа для формулирования ситуационной задачи	8
	Особенности ситуационных задач с историческим содержанием	. 10
	«Формула» ситуационной задачи с историческим содержанием:	. 11
	Конструирование СЗ с историческим содержанием	. 11
	Приемы блока «Текст».	. 12
	Приемы блока «Предмет»	. 15
	Приемы блока «Метапредмет»	. 16
	Оценивание через СЗ в урочной и внеурочной деятельности	. 18
	Применение ситуационных задач с историческим содержанием	. 21
	Метапредметное и межпредметное	. 21
	Матрица оценивания ситуационной задачи	. 22
	Экспертный лист для оценивания ситуационной задачи	. 22
T	ематическая картотека 7 класс	. 23
	Раздел 1. Физика и физические методы изучения природы	. 23
	1. Поющий дом	. 23
	2. «Собака»?	. 24
	3. Палаты царя Алкиноя	. 25
	4. Всегда 12?	. 25
	5. Высота	. 26
	6. Тройка	. 27
	Раздел 2. Первоначальные сведения о строении вещества	. 27
	7. Графен	. 27
	8. Чудо или кража?	. 29
	9. Танец под микроскопом	. 30
	10. Керосин	. 31
	11. Диффузия	. 32
	12. Твердое молоко	. 33
	13. Народные мудрости	. 34
	14. Метрология и Интернет	. 35

Разде	ел 3. Взаимодействие тел	36
15.	Бездонный сосуд	36
16.	Опасные гонки	36
17.	Николаевская дорога	36
18.	Японцы знают толк в скорости	37
19.	Земля – остановись!	38
20.	Скорости на заре авиации	39
21.	Весы	40
22.	Пружинные весы	42
23.	Необычные бусины	43
25.	Вислые печати	45
26.	Денежная реформа	45
27.	Западня	47
28.	Падающий слон	48
29.	Цирк	49
30.	Макаровская деталь	50
31.	Героический переход	51
32.	Гром-камень	53
33.	Белая верста	53
34.	Ошибка Наполеона	55
35.	Парик	56
36.	Ткачество на дощечках	56
37.	Крушение поезда	57
Разде	ел 4. Давление твёрдых тел, жидкостей и газов	57
38.	Сапоги	57
39.	T-34	58
40.	Пневмопочта	59
41.	Парадокс	60
42.	Вятская перекопь	60
43.	Паскаль	61
44.	Первый водопровод	62
45.	Рекорд	62
46.	Кузня под водой?!	63
47.	Панамский канал	64
48.	Фонтан Петра	64

49. Гидростатические весы Галилея	66
47. Дорогая ирригация	67
50. Детинцы	67
51. Чаша Пифагора	68
52. Гадание на воде	68
53. «Умный дом»	69
54. Странные часы	69
55. Плавучий музей	70
56. Полет на «Зените»	71
57. Ушкуй и ушкуйники	73
58. Загадки из фольклорного архива Л.В. Дьяконова:	74
59. Покорители неба	74
Раздел 5. Работа и мощность. Энергия	75
60. Совершается ли работа?	75
61. Лошади и рельсы	76
62. Первый лифт	77
63. Вечный двигатель из цепочки поплавков	78
64. Загадки из собрания Т. К. Николаевой:	79
65. Простые механизмы в быту	80
Диагностический материал на основе ситуационных задач с историческим содержанием 7 класс	81
Входная диагностика	
Срезовая диагностика	
Выходная диагностика	
Список литературы	
Источники для задач	
Источники для задачИсточники изображений из сети Интернет	95 95
источники изооражении из сети интернет	

Введение

В методике физики предпринимаются многочисленные попытки к раскрытию гуманитарного и воспитательного потенциалов содержания предмета «физика». Решение этой сложной задачи связывается в том числе и с использованием исторического материала в обучении физике. Это содержание имеет не только научно-познавательную ценность для развития интеллектуальных качеств личности учащихся, но и позволяет педагогу формировать у обучающихся эмоционально-ценностную сферу их учебной деятельности, взгляд на мир и осознавать свое место в нем. Чаще всего при обучении физике преимущественное внимание обращается на формирование понятийного аппарата науки и её прикладного содержания, а духовный, гуманитарный, общекультурный потенциал содержания «отодвигается» на второй план. Предметный «центризм», широко распространенный в традиционном обучении физике, негативно влияет на развитие индивидуальности каждого ученика, поскольку «скрывает» огромный спектр ценностно-смысловых и нравственно-этических аспектов физики.

Большими воспитательными возможностями обладает биографическая информация об ученых-физиках. Интересными для обучающихся будут задачи, связанные с культурой, бытом людей и забавными историческими ситуациями, в которых есть физические явления.

Физических же задач с историческим содержанием до сих пор мало в доступных для учителя источниках информации. Однако, решая задачи с элементами истории науки, культуры и страны, мы можем задействовать различные формы отношений обучающихся к миру: рациональную, эмоциональную и поведенческо-деятельностную, — то есть обеспечим личностно ориентированный характер обучения, формирование разносторонних качеств личности ученика, особенно его ценностно-смысловой и нравственной сферы.

Данное учебно-методическое пособие предлагает варианты использования содержательных элементов историзма в курсе физики основной школы как средства формирования универсальных учебных действий обучающихся, пре-имущественно личностных и познавательных.

Пособие предназначено для учителей физики, будет полезным для проведения уроков и внеурочной деятельности по общеинтеллектуальному направлению. В рамках внеурочной деятельности на основе задач педагог может организовать научно-познавательную деятельность или предложить проект.

Необходимость применения ситуационных задач в обучении

Качественное образование сегодня рассматривают не только с предметных, но и личностных и метапредметных позиций. Метапредметные результаты обучения предполагают освоение обучающимися межпредметных понятий и универсальных учебных действий, которые позволят самостоятельно использовать их в учебной, познавательной и социальной практике [1]. Новые требования к образованию предполагают изменение содержания образовательной деятельности, и возникает потребность в поиске форм, методов, приемов, средств,

которые будут способствовать формированию новых образовательных результатов. В КИМ ОГЭ, ЕГЭ, ВПР по физике все чаще встречаются объемные текстовые задачи. Обучающимся необходимо уметь не только решать физические задания, но и работать с объемной текстовой информацией: искать, выделять главную и второстепенную, лишнюю, понимать, интегрировать, интерпретировать, рефлексировать и использовать по назначению. Совместить работу с текстом, физической задачей можно посредством ситуационных задач.

Ситуационные задачи позволяют интегрировать знания и умения, полученные при изучении различных предметов (не только физики), способствуют формированию универсальных учебных действий, расширяют образовательное пространство обучающихся, имеют большой педагогический и дидактический потенциал.

Понятие ситуационной задачи

Ситуационные задачи являются нестандартным средством обучения. Н. В. Жулькова определяет ситуационную задачу как средство обучения, включающее совокупность условий, направленных на решение практически значимой ситуации с целью осознанного усвоения учащимися содержания учебного предмета [2, с. 46]. Н. В. Горбенко описывает ситуационные задачи как задания, взятые из жизненного контекста и содержащие личностно значимый вопрос, который помогает учащимся убедиться в необходимости данного знания [3, с. 48]. О. В. Акулова, С. А. Писарева, Е. В. Пискунова в определении ситуационных задач делают акцент на освоении интеллектуальных операций [4, с. 20]. Все приведенные выше определения содержат общие ключевые позиции, характеризующие сущность такого рода заданий: жизненная и практическая значимость, ориентированный на личность вопрос для обеспечения ситуации поиска познавательного смысла, развитие компетенций и универсальных умений (в частности, познавательных) учащихся.

Авторское определение понятия

Акцентируя внимание не только на жизненной и практической значимости ситуационных задач, ориентированности на личность обучающихся, для обеспечения ситуации поиска познавательного смысла, формирования и развития универсальных умений обучающихся, но и на методологических действиях и операциях, которые входят в состав ожидаемых метапредметных результатов образования, предлагаем синтетическое определение, в котором ситуационные задания понимаются как средство обучения:

— в своей содержательной основе имеющие практически значимый материал для обучающегося, который может быть принят субъектом образования при создании соответствующих педагогических условий по конструированию личностных смыслов;

 позволяющие осваивать интеллектуальные операции и научные принципы познания как составляющие методологического и метапредметного содержания обучения.

Педагогические условия

Обучающиеся и педагоги взаимодействуют друг с другом в процессе решения ситуационных задач, поэтому для достижения метапредметных образовательных результатов необходимо соблюдение следующих педагогических условий:

- готовность педагога принять текст как средство, обладающее потенциальными возможностями для формирования универсальных учебных действий обучающихся;
- организация деятельности педагога по конструированию ситуационных задач с использованием конструктора приемов;
- реализация деятельности с ситуационной задачей по составляющим:
 текст, предмет, метапредмет;
 - умение проводить оценку уровня развития УУД средствами СЗсИС.

Предметная основа для формулирования ситуационной задачи

Ситуационная задача — это упрощенный и усеченный вариант кейса. Кейс по теме обычно включает в себя [5, с. 9]:

- название задачи;
- ситуацию набор текстов, случай, историю из реальной жизни, проблему;
- комментарий ситуации, предложенный автором;
- личностно значимые вопросы и задания для работы с кейсом;
- приложения (изображения, модели объектов, звуковое сопровождение).

Приведем возможные классификации типов и видов ситуаций, применимых к образовательной сфере [6, с. 32] (табл. 1).

Таблица 1

№	Классификационный	Виды образовательных ситуаций	
	признак	(ситуационных задач)	
1	По характеру освещения материала	• ситуация-проблема	
		• ситуация-иллюстрация	
		• ситуация-оценка	
		• ситуация-упражнение	
2	По специализации	• технологические	
		• экологические	
		• исторические	
		• экономические	
		• промышленные и т. д.	
3	По композиционному построению	• одностадийные	
		• двустадийные	

		• многостадийные
4	По степени новизны	• известные
		• новые (неизвестные)
		• стандартные
		• модифицируемые
5	По широте охвата материала дисци-	• внутритематическая
	плин учебного плана	• тематическая
		• предметная
		• полипредметная
6	По назначению	• учебная
		• исследовательская
		• универсальная
		• техническая
7	По месту выполнения	• домашние
		• классные
		• внеурочные (кружковые занятия)
8	По функции задачи	• диагностическая
		• контрольная
		• обучающая
		• тренировочная
		• научно-исследовательская
		• методологическая

Текст задачи, во-первых, должен быть ориентированным на своего читателя, поэтому язык изложения текста – понятный, доступный; во-вторых, он должен содержать в себе специфическую проблему: понятную и близкую для обучающегося, провоцирующую эмоции и интерес, и научную одновременно. Для развития мышления, демонстрации методологического аппарата науки, её принципов, знакомства с историей предмета и биографиями её творцов особо эффективными будут задачи с историческим содержанием. Текст, связанный с историей науки, быта людей, всегда несет в себе особенно острое противоречие между устаревшим и современным миропониманием, старым и новым знанием и опытом ученика. Противоречие вызывает личный осознанный интерес ученика к достижению результата – получению ответа. Обучающийся находится в позиции «главного разрешателя» проблемы – головоломки. Тексты с историческим содержанием, имеющие физическое зерно, позволяют заинтересовать широкий круг школьников: гуманитариев и технически ориентированных. Заметим, именно для физики такие задания будут целесообразными ещё и с точки зрения формирования у обучающихся такого личностного результата, как гражданская идентичность и патриотизм, что для предмета является достаточно проблематичным. При использовании исторического материала в такой форме в процессе обучения представляется возможным показать развитие научных идей, проследить за становлением теорий, выявить борьбу мыслителей и удивительные догадки преобразователей практики (инженеров, конструкторов, ученых).

Особенности ситуационных задач с историческим содержанием

Историческое содержание представлено следующими вариантами: биографии известных ученых, истории изобретения приборов и устройств, истории наблюдения, изучения или объяснения явлений, процессов, объектов окружающего мира, истории применения элементов быта, культуры народов, необычные исторические и краеведческие ситуации.

Ситуационные задачи с историческим содержанием имеют большой педагогический потенциал:

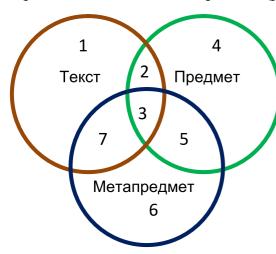
- 1) создание дополнительного эмоционального и интеллектуального стимула (мотива) к учебной деятельности;
 - 2) создание методологически ориентированных заданий;
- 3) создание заданий, в которых тесно связаны физика, история, искусство и культура;
- 4) создание синтетических заданий: для работы с текстом, предметом одновременно.
- О. В. Акулова, С. А. Писарева, Е. В. Пискунова предлагают рассматривать следующую структуру ситуационных задач: название (привлекающее внимание учащихся); ситуация-случай (факт, проблема, история); личностно значимый познавательный вопрос; информация по данному вопросу, представленная в разнообразном виде (текст, схема, таблица); вопросы и задания для работы с задачей) [4, с. 25]. Название, с нашей точки зрения, не является обязательным элементом задачи, хотя оно может присутствовать. Личностно значимый вопрос мы относим к заданиям, которые связаны с текстом, он является их частью. Дополнительная информация может тоже привлекаться к задаче, а может отсутствовать. А. Ж. Насимов предлагает следующий вариант построения задания: 1) текст; 2) задания (на запоминание и последующее воспроизведение материала; на применение практических знаний в знакомой ситуации; на применение знаний в незнакомой, нестандартной ситуации) [7, с. 40]. Данная структура является сокращенной, по сравнению с предложенной ранее. В пособии мы предлагаем структуру, схожую с вариантом А. Ж. Насимова, в которой ситуационная задача включает три блока:
- 1-й блок «Текст»: содержание нестандартной ситуации, провоцирующее эмоции и интерес обучающегося, задания по тексту;
- 2-й блок «Предмет»: задания, ориентированные на предмет (обнаружение противоречия и перевод его в предметную «плоскость» в историческом контексте, ощущаемые более значимо в личностном плане, решение задач, эксперимент);
- 3-й блок «Метапредмет»: методологические задания по циклу научного познания (факт гипотеза-модель следствия, эксперимент), способствующие разрешению противоречия(-ий).

Таким образом, своеобразной «формулой» ситуационной задачи с историческим содержанием может выступить следующая совокупность условных обозначений:

«Формула» ситуационной задачи с историческим содержанием:

$$C3 = T (ЭИ) + \Pi + M, где$$

СЗ – ситуационная задача как средство обучения,


Т (ЭИ) – текст задачи с элементами историзма,

 Π – предметная составляющая задачи,

М – метапредметная составляющая задачи.

Блоки задачи неразрывно связаны друг с другом. Для того, чтобы перевести задачу из проблемного поля в учебное, необходимо прочитать, осмыслить и усвоить текст. Для следующих действий с задачей необходимы конкретные предметные знания и умения. Для обобщений и выдвижения гипотез, подбора методов и приемов моделирования, проектирования выводов обучающимся необходимы метапредметные умения.

«Механизм» ситуационной задачи с историческим содержанием можно представить в виде диаграммы (рис. 1):

- 1. Выявление факта: работа с текстом.
- 2. Выдвижение гипотезы: обнаружение проблемы в предметном поле.
- 3. Создание модели текста.
- 4. Создание модели объекта, явления, процесса: деятельности по предмету.
- 5. Эксперимент, апробация, решение задачи, анализ результата и модели.
- 6. Метапредметные задания.
- 7. Смысловое чтение.

Puc. 1

Конструирование СЗ с историческим содержанием

Педагог может обнаружить текст с историческим содержанием, который можно применить на конкретном уроке, в самых разных источниках: энциклопедиях, научно-популярных изданиях, сайтах в сети Интернет и т. д. Для организации взаимодействия обучающихся с текстом мы предлагаем применить конструктор приемов (табл. 2). Из каждого блока (текст – предмет – метапредмет) педагог может выбрать по 1–2 приемам.

Текст – поиск и извлечение

- найдите в тексте (то, что задано в явном виде)
- сформулируйте определение на основе текста
- составьте список понятий, касающихся
- назовите основные части
- выделите главную и второстепенную информацию
- найдите самую значимую информацию в тексте
- найдите противоречивую информацию в тексте
- найдите высказывание, которое не соответствует содержанию в тексте
- найдите высказывания соответствующие содержанию в тексте

Текст – интеграция и интерпретация

- определите тему, идею текста
- подберите, нарисуйте рисунок к тексту
- разделите текст на логические части
- составьте вопросы к тексту
- восстановите последовательность событий в тексте
- сравните части текста между собой
- на что похоже
- расположите в определенном порядке
- сгруппируйте все вместе
- дайте название тексту
- сравните точки зрения
- сформулируйте определение
- предложите классификацию
- составьте, заполните таблицу на основе текста
- сравните и обоснуйте
- приведите свой пример того, что
- изобразите графически
- восстановите причинно-следственные связи

Текст – рефлексия и оценивание

- сформулируйте вывод на основе
- поясните шаги для
- объясните причины того, что
- оцените значимость
- оцените погрешность
- определите критерии оценки
- выскажите свое мнение
- сделайте прогноз на основе полученных сведений
- найдите дополнительную информацию по теме содержания текста
- сформулируйте тезис на основе текста

- объясните и оцените иллюстрацию к тексту
- сделайте заключение на основе

Предмет – решение конкретной проблемы

- предметные задания
- решите
- выполните эксперимент
- нарисуйте
- сделайте реконструкцию
- расскажите о ... по плану (паспорту)
- придумайте и решите задачу самостоятельно на основе текста

Метапредмет

- сформулируйте гипотезу по форме
- сформулируйте гипотезу по схеме
- заполните пропуски в цепочке
- восстановите цепочку познания
- заполните схему белый ящик
- заполните схему серый ящик
- заполните схему черный ящик

Приемы блока «Текст»

Будут полезными приемы для активизации работы с текстом (табл. 3).

Таблица 3

«Инсерт» (Д. Воган, Т. Эстес) [10, с. 41]. Познакомьтесь с основными приемами работы с текстом и сделайте отметки:

- V я это знаю;
- +- это новая информация для меня;
- – я думал по-другому, это противоречит тому, что я знал;
- ? это мне непонятно, нужны объяснения, уточнения

«Метод эмоциональной остановки» (М. С. Атаманская) [8, с. 56]. Читающему предлагается остановиться в местах задержки специальным приемом: либо подчеркиванием слов, либо выделением цветом моделей, рисунков и цифр, особо заинтересовавших. Учителю нужно быть гибким и готовым изменять выстроенную предметную логику в сторону интересов обучающихся

«Диалог с текстом» (Г. Г. Граник, О. В. Соболева) [11, с. 86].

Прочитать текст по предложениям (фразам), выполнить задания, включенные в текст в символической форме. В конце предложений предлагается одно или два из четырех видов заданий, обозначаемых в тексте символом (буквой). Эти задания надо выполнить по ходу чтения текста.

- ${\bf B}$ вопрос, задать вопрос к тексту;
- О ответ, дать ответ на поставленный вопрос;
- 3 заглянуть в будущее, мысленно взглянуть в будущее и представить, что произойдет дальше, как будут развиваться события;
 - П проверить себя, т. е. сравнить свой ответ с текстом или свой прогноз будущего с опи-

санием будущего в тексте.

Потом прочитать текст целиком, озаглавить

Приём «**Хорошо/плохо»** [17, с. 135]. Учитель задает объект или ситуацию. Учащиеся (группы) по очереди называют «плюсы» и «минусы» с опорой на учебный текст. (Полезно/вредно.)

«Двойной дневник» [10, с. 44]. Лист делится пополам. С левой стороны записываются фрагменты текста, которые произвели наибольшее впечатление, вызвали какие-то воспоминания или ассоциации с эпизодами из собственной жизни. Возможно, возникли определенные аналогии из предыдущего опыта. Что-то просто озадачило или вызвало в душе резкий протест. С правой стороны предлагается дать комментарий: что заставило записать именно эту цитату? Какие мысли она вызвала? Какие вопросы возникли?

Выписки из текста	Вопросы и комментарии	

«**Цепочка**» [12, с. 37]. Обучающиеся читают текст, составляют к нему вопросы и ответы. Первый вопрос задает учитель, на него отвечает любой ученик. Этот ученик задает новый вопрос, проверяет правильность ответа следующего ученика и т. д.

«**Ромашка Блума**» [10, с. 37] состоит из шести лепестков, каждый из которых содержит определенный тип вопроса. Таким образом, шесть лепестков – шесть вопросов:

Рассмотрим шесть типов вопросов:	Логические	Вопросы
	операции	
1. Простые вопросы.	Знание	Что? Когда? Как?
2. Уточняющие вопросы.	Понимание	Правильно ли понял?
3. Вопросы-интерпретации.	Анализ	Почему?
4. Оценивающие вопросы.	Оценка	Что хорошо? Что плохо?
5. Творческие вопросы.	Синтез	Что было бы?
6. Практические вопросы.	Применение	Где используется?

«Шапка» вопросов» (А. П. Ершова) [16, с. 56]. Каждый участвующий бросает в «шапку» три записки с вопросом по тексту:

- 1. Вопрос, проверяющий знание текста.
- 2. Вопрос, ответ на который я сам не знаю, но хотел бы узнать (по тексту).
- 3. Вопрос по выяснению другого мнения о тексте и сравнению его со своим.

Участники могут ограничиваться и одним-двумя вопросами. Но на каждом листочке указывается авторство. Смысл приёма заключается в постановке ученика, формулирующего и записывающего эти вопросы, в разные позиции: проверяющего, не знающего, советующегося.

Отвечают на вопросы все ученики. Они подходят к «шапке» и вынимают одну из бумажек. Во время выполнения задания хорошо и доступно для детей раскрывается понятие «интересного» и «неинтересного» вопроса и ответа

«креативная постановка вопросов» Э. Ландау [11, с. оз]			
Вопрос	Направление вопроса		
1. Куда дальше?	Вопрос, ориентированный в будущее		
2. Что правильно, а что нет?	Оценочный вопрос		
3. Что было бы, если бы?	Воображаемый вопрос		
4. Что я чувствую, что я знаю?	Субъективный вопрос		
5. Почему, кто, как, что делает?	Казуальный (случайный) вопрос		
6. Кто, как, что, где, когда?	Описательный вопрос		

«Знаю, хочу узнать, узнал» (Д. Огле) 3-X-У [17, с. 103].

1-й шаг. До знакомства с текстом (модулем в целом) обучающиеся самостоятельно или в группе заполняют первый и второй столбики таблицы «Знаю», «Хочу узнать».

2-й шаг. По ходу знакомства с текстом (содержанием курса), учащиеся заполняют графу «Узнал».

3-й шаг. Подведение итогов, сопоставление содержания граф.

Дополнительно можно предложить еще две графы для заполнения таблицы.

Знаю	Хочу узнать		Узнал
		•	
Источники информации		Что осталось нера	скрытым?

«Составление ленты времени» Выделить в тексте события для расположения на ленте времени. Самые важные можно выделить цветом или расположением (например, все события снизу, а самые важные сверху). Можно обратить внимание на расстояния между событиями по времени и расположить отметки ближе/дальше

Приемы блока «Предмет»

Паспорт физической величины, явления, закона. Данный методический прием имеет разные варианты реализации. Самые полные обобщенные учебные планы рассказа о величине, опыте, приборе, законе, явлении разработала А. В. Усова [13, с. 23]. Приведем планы рассказа об опыте и приборе (табл. 4).

Таблица 4

Прибор	Опыт	
1. Название	1. Цель опыта	
2. Назначение	2. Схема опыта	
3. Внешний вид и отличительные признаки	3. Условия, при которых осуществляется опыт	
4. Принцип действия	4. Ход опыта	
5. Основные части и их назначение	5. Результат опыта (его интерпретация)	

А. Р. Акжигитов [14, с. 25] предложил тоже удобный и компактный вариант обобщенных учебных планов по физике, который назвал «Паспорт физический» (табл. 5).

Таблица 5

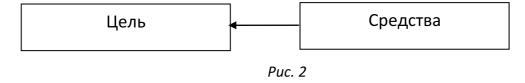
«Паспорт физический»				
Величина	Закон	Явление		
1. Название	1. Название	1. Название		
2.Ученый	2. Ученый	2. Ученый		
3. Формула	3. Формулировка	3. Описание		
4. Единицы СИ	4. Границы применения	4. Объяснение		
5. Прибор для измерения	5. Факты-подтверждения	5. Примеры проявления в		
	6. Примеры использования человеком	природе, использование в технике		

Решение физических задач. В тексте с историческим содержанием может совсем не оказаться чисел. Пусть данный факт не тревожит обучающихся. Но если обучающийся смог обнаружить физическое явление в тексте, то сможет его объяснить или сформулировать задачу самостоятельно. Задачи качественного характера чаще всего можно выявить в тексте. Для количественных задач предлагаем использовать табличные или стандартные данные.

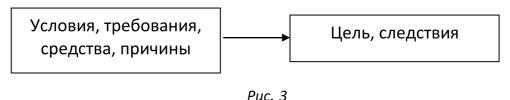
Реконструкция. Поясним термины «деконструкция», «интерпретация» и «реконструкция» при работе с ситуационными задачами [15, с. 5].

«Деконструкция» выступает в ведущей роли метода работы с текстом исторического содержания. Деконструкция заключается в выявлении внутренней противоречивости текста, в обнаружении в нём скрытых смыслов.

«Интерпретация» понимается как истолкование, объяснение идеи, темы, образной системы и других составляющих текста, перенос его в современность, собственный опыт.

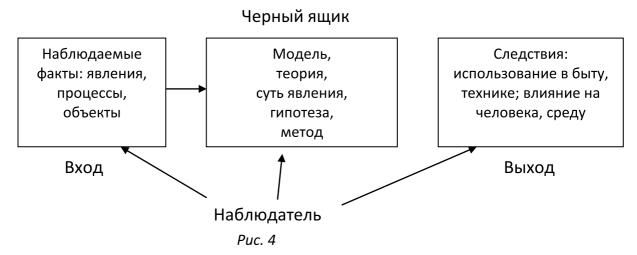

«Реконструкция» заключается в творческом решении схожей или аналогичной задачи, воссоздание опыта, прибора. Многие опыты или простейшие изобретения, с которыми обучающиеся познакомятся в тексте, можно реконструировать. Таким образом, решение задачи выйдет на высокий творческий уровень. Особенно подойдут такие задачи для внеурочной деятельности, в рамках которой ученики смогут выполнить индивидуальный проект.

Приемы блока «Метапредмет»


Предложите гипотезу. Гипотеза — это положение, выдвигаемое в качестве предварительного, условного объяснения некоторого явления или группы явлений; предположение о существовании некоторого явления. Для того чтобы научить умению формулировать гипотезу, обучающимся предлагают текст с пропусками или рисунок [18].

Для формулировки гипотезы удобно использовать формы:

Первая форма «Цель \leftarrow средства»: для того, чтобы достичь (обеспечить, реализовать) *цель*, необходимо обеспечить (использовать, разработать, внедрить) *средства* (рис. 2).



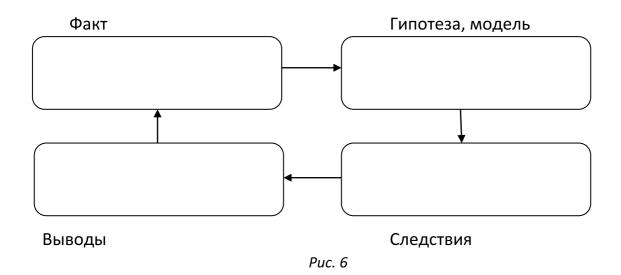
Вторая форма «Условия \rightarrow цель»: Если выполнить (определить) *требования (условия)*, то можно достичь *иели* (рис. 3).

Черный ящик. Решать выявленную в тексте задачу мы предлагаем по стратегиям белого, серого и черного ящиков [19, с. 77]. Суть стратегии заключается в том, что ученик при работе с текстом выступает в качестве наблюдателя. На основе содержания текста строится модель из трех компонентов: «входная информация — «ящик» — выходная информация» (рис. 4). Входная информация всегда имеется в тексте, под ней понимают описанные (наблюдаемые) факты, явления, процессы, объекты. Содержимое «ящика» представляет собой модели явления, теории, гипотезы, методы. Вскрыть содержимое «ящика» можно на основании противоречия, которое заложено в задачу. Содержимое ящика всегда предметно.

Выходная информация в тексте может отсутствовать, под ней мы понимаем использование явления в быту, в технике, влияние явлений на человека или окружающую среду.

Белый ящик имеет явное для наблюдателя содержимое, в понятном виде представленное в тексте задачи. Стратегия белого ящика позволяет предложить новые варианты следствий — выходной информации, сравнить явления, факты — перепроверить входную информацию. На основании принципа белого ящика предлагаются задачи тренировочного и контролирующего характера.

Вариант серого ящика предполагает, что содержание системы известно наблюдателю частично. Восполнить серый ящик возможно только путем получения новых знаний, в ходе эксперимента и обсуждения. Входная информация и послужит подспорьем для восстановления ящика. Выходная информация может присутствовать в тексте, а может и отсутствовать. Такие задачи позволяют организовать мотивацию на уроке, используются для тренировки и творческой деятельности.


Черный ящик не дает наблюдателю сведений о сути явлений, не предлагает теорий либо методов. Для ученика известными элементами являются только входная и выходная информация. Такие задачи эффективны на уроках открытия нового знания и рефлексии. Данная стратегия позволяет структурировать текст, восстановить причинно-следственные связи, провоцировать выдвижение гипотезы, следствий. Для овладения обучающимися данной стратегией,

предлагаем модификацию с дополнительными вопросами к каждому компоненту схемы (рис. 5):

Puc. 5

Проследите цепочку научного познания на основе текста. Ценным аспектом процесса решения ситуационных задач с историческим содержанием является возможность формирования учителем понятий, связанных с философской и физической линией времени (прошлое, настоящее, будущее), научнотехническим прогрессом, что также вносит вклад в формирование метапредметной составляющей содержания обучения. На данном этапе происходит осмысление всей проделанной работы. Обучающимся предлагается восстановить всю последовательность выполненных действий в соответствии с цепочкой научного познания [22]: «факты, проблема(-ы) — гипотеза, модель — следствия, выводы — критериальный эксперимент, опыт» (В. Г. Разумовский) (рис. 6).

Оценивание через СЗ в урочной и внеурочной деятельности

Для мониторинга успешности формирования и развития универсальных учебных действий через решение ситуационных задач был разработан уровневый аппарат (табл. 6). Блок заданий «Текст» предполагает формирование и развитие категории умений, связанных с поиском и извлечением информации, интеграцией и интерпретацией с последующими рефлексией и оцениванием. Данные категории были выделены с учетом логики взаимодействия с текстом и проверяемыми умениями в международном исследовании PISA [20].

Таблица 6

	Таблі					
нты С3		Умения				
Компоненты заданий СЗ	Высокий (3)	Средний (2)	Низкий (1)			
		Поиск и извлечение				
потность)	- определение значимой информации по самостоятельно сформулированным основаниям, исходя из собственного понимания целей работы и поставленных задач	-извлечение из текста информации, заданной в неявном виде; - выявление противоречивой, конфликтной информации, обнаруженной в тексте	-выявление из текста информации, заданной в явном виде; -выделение информации, не соответствующей содержанию текста; -определение основной и второстепенной информации			
pan	Интеграция и интерпретация					
Текст (читательская грамотность)	- самостоятельное определение темы и идеи текста; - деление текста на смысловые части; - составление системы вопросов к тексту; - смысловое свертывание выделенных фактов и мыслей; - систематизация извлеченной информации в рамках самостоятельно избранной сложной структуры; - подбор рисунка, построение таблицы, графика по тексту, переход	 выделение основной идеи, смыслового ядра текста; составление отдельных вопросов к тексту; установление последовательности действий, содержащихся в тексте; интерпретация результатов исследований на основе понимания информации из текста; перевод сложной по составу информации из текстового в графическое, табличное представление и наоборот; 	- сравнение фрагментов текста; - сопоставление информации из разных частей текста; - перевод простой информации из текстового представления в графическое и наоборот; - систематизация извлеченной информации в рамках простой структуры			

	от одного представления информации к другому	 систематизация из- влечённой информации в рамках сложной структуры; самостоятельное для систематизации и структурирования ин- формации по теме 	
		Рефлексия и оценивание	
	 оценивание информации, обнаруженной в тексте, исходя из своих представлений о мире, подтверждение вывода собственной аргументацией; прогнозирование; поиск дополнительных источников информации; самостоятельное определение информации, нуждающейся в проверке, самостоятельная проверка информации; применение информации из текста при решении учебнопознавательных и учебнопознавательных и учебнопрактических задач 	 изложение полученной информации в контексте решаемой задачи; формулирование выводов и заключений на основе фактов (в т. ч. имеющихся в неявном виде) на основе полученной информации и приведение дополнительных аргументов для их подтверждений 	- объяснение простых рисунков, таблиц, чтение графиков, понимание и определение смысла терминов, неизвестных слов; умение перефразировать мысль (объяснить «другими словами»); - формулирование тезиса, выражающего общий смысл текста; - формулирование выводов и заключений на основе фактов, имеющихся в явном виде
ЭМУ	Пре	едмет (решение проблемы,)
Предмет (готовность к самостоятельному разрешению проблем)	•самостоятельное объяснение и приведение дополнительных примеров (аналогичных, разъясняющих); •самостоятельное решение проблемы, поиск альтернативных вариантов, разработка новых задач, идей проектов; (творческий)	•перебор алгоритмов из числа известных (опробованных на своём опыте), самостоятельный выбор подходящего; • использование усвоенных способов действий в процессе предметной деятельности в знакомых условиях; • работа по плану; (продуктивный)	•восстановление известного алгоритма на основе конкретных действий, совершенных по нему; •решение (выполнение) задач (заданий, проблем) с внешней помощью (по образцу) (репродуктивный)

Метапредмет (методологическая грамотность) • трудности формулиро-• формулирование ги-• самостоятельная потезы с подсказками; вания гипотезы при формулировка гипоналичии подсказок; • фрагментное (неполтезы; • трудности с формулиное) определение эле-• самостоятельное Метапредмет ровкой любых элементов ментов цепочки цикла выделение элементов цепочки научного познанаучного познания с цепочки цикла научния с подсказками; ного познания «факт подсказками; • трудности с заполнени-– гипотеза, модель – • заполнение моделей ем модели ящиков при ящиков с подсказками эксперимент, следналичии подсказок ствие»; • самостоятельная работа с моделями белый, серый, черный ящик – выделение элементов

Применение ситуационных задач с историческим содержанием

- Н. Ю. Конасова [21, с. 11] предлагает различные варианты применения ситуационных задач в образовательном процессе:
- 1. Для совместной работы на уроке, факультативе, во внеурочной деятельности.
 - 2. Для оценки достижений обучающихся.
- 3. Для проведения метапредметной олимпиады, конкурса, мозгового штурма.
 - 4. Для тренинга по физике.
 - 5. Для дополнительных заданий, для проектной деятельности.

Из предложенных актуальных вариантов следует, что учащиеся могут решать ситуационные задачи индивидуально, в паре и в группе. В зависимости от цели учителя в процессе решения одной задачи формы работы могут меняться.

Метапредметное и межпредметное

Чтобы не возникало противоречий, выделим различия между понятиями «межпредметное» и «метапредметное» в содержимом ситуационной задачи с историческим содержанием.

Межпредметным компонентом задачи будет основа, связанная с историей культуры, быта людей, биографиями ученых. Межпредметной является взаимосвязь между содержанием предметов физики и истории.

Метапредметным компонентом задачи является деятельностная часть: обнаружение обучающимися проблем в нестандартном поле и формулирование физических задач, решение методологически ориентированных заданий.

Матрица оценивания ситуационной задачи

Для индивидуального оценивания решения ситуационной задачи в соответствии с уровневым аппаратом предлагаем матрицу оценивания (табл. 7).

Таблица 7

ФИО	Текст	Текст	Текст	Предмет	Метапредмет
	поиск	интеграция	рефлексия	решение	
	и извлечение	и интерпретация	и оценивание	проблемы	
ФИ 1	1 2 3	1 2 3	1 2 3	1 2 3	1 2 3
ФИ 2	1 2 3	1 2 3	1 2 3	1 2 3	1 2 3

Экспертный лист для оценивания ситуационной задачи

При групповом решении ситуационных задач с историческим содержанием, например на внеурочной деятельности или тренинге по физике, для оценивании предлагаем экспертный лист для оценивания процесса решения.

Таблица 8

Задание	Балл
	(1-2-3)
Блок «Чтение»	
1. Готовность к постановке проблемы	
1.1. Выделение и формулировка проблемы в ситуации, описанной в тек-	
сте	
1.2. Первичный анализ проблемы, выделение и подкрепление (подтвер-	
ждение) актуальности и значимости проблемы в конкретных усло-	
виях на основе текста и других источников	
Блок «Предмет»	
2. Решение проблемы средствами предмета	
2.1. Анализ проблемы	
2.2. Составление плана решения проблемы	
2.3. Реализация плана решения	
2.4. Анализ полученных решений	
3. Оценка реалистичности и продуктивности решения, учет следствий и	
затруднений	
4. Степень креативности решения (нестандартность, творческий харак-	
тер)	
5. Привлечение и формулировка новых вопросов и задач к проблеме	
Блок «Метапредмет»	
6. Анализ и фиксация этапов решения проблемы с точки зрения про-	
цесса познания	
7. Разработка тем для проектной деятельности	
8. Привлечение средств ИКТ	
9. Создание продукта деятельности, предложенного задачей	
10. Самостоятельное инициативное создание нового продукта деятель-	
ности	

11. Коммуникативная культура:	
Культура устной, письменной речи	
Культура устной и письменной научной речи	
Культура поведения и взаимодействия в команде и (или) другими	
решателями проблемы	
12. Культура представления результатов решения проблемы	
Всего баллов	

Тематическая картотека. 7-й класс

Раздел 1. Физика и физические методы изучения природы

1. Поющий дом

B – вопрос, задать вопрос к тексту;

0 – ответ, дать ответ на поставленный вопрос;

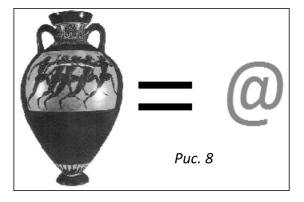
3 — заглянуть в будущее, мысленно взглянуть в будущее и представить, что произойдет дальше, как будут развиваться события;

II — проверить себя, т. е. сравнить свой ответ с текстом или свой прогноз будущего с описанием будущего в тексте.

Жила в 20-е годы XX века в селе Тихие Овраги женщина Прасковья Комарова. Скопила она денег и обновила свою избу. Но несчастье случилось: все село бурлит, говорят, поселилась у неё в доме нечистая сила. Пакостит, ладно еще, не каждый день, обычно вечерами, но зато лает, скулит и стонет в доме так, что жизнь превратилась в сплошную муку В. Решили комсомольцы разобраться с нечистой, а то совсем жизни не стало, все сельчане странный дом стороной обходят В. Пришли молодые люди к избе Комарихи и приложились к стене. И сразу стена жалобно, надрывно застонала. Все испугались и убежали. Несколько дней гадали над тайной, обратились к местному плотнику. Оказалось, это плотник, который избу чинил, пошутил. В паз, у самого карниза он вставил бутылочное горлышко О. Ветер дует — завывание, вздохи и прочая музыка, а бабы думали, что это домовой. Залепили парни хлебным мякишем бутылочное горлышко 3, и тихо стало в избе П [23, с. 65].

1. Восстановите картину событий в цепочке черного ящика (рис. 7).

2. Приведите свои примеры (черных ящиков), когда научное мышление позволяет разобраться в бытовых заблуждениях.


2. «Собака»?

До и после чтения текста заполните таблицу (табл. 9).

Таблица 9

Знаю	Хочу узнать	Узнал	Что осталось нерас- крытым?

Всем известен и привычен символ @ – «собака». Но оказывается, он появился задолго до начала компьютерной эпохи. Например, в письме, написанном флорентийским купцом в 1536 году, упоминалась цена одной «А» вина, причем буква «А» была украшена завитком и выглядела как @. Историки предполагают, что это сокращённое обозначение единицы измере-

ния объёма — стандартной амфоры. Большие высокие амфоры использовались для транспортировки различных жидкостей. В Риме стандартные амфоры имели объем 26,03 литра.

В испанском, португальском, французском языках символ @ традиционно означает арробу — старинную испанскую меру массы, равную 11,502 кг. Само слово происходит от арабского «ар-руб», что означает «четверть» (четверть от ста фунтов). Арроба также использовалась как единица измерения объёма; «большая арроба», или «винная арроба», была равна 16,133 литра, а «малая арроба», или «масляная арроба», была равна 12,563 литра. В 2009 году испанский историк Хорхе Романсе обнаружил сокращение арробы символом @ в арагонской рукописи, написанной в 1448 году [24].

- 1. Перечислите все единицы измерения и физические величины, которые встретились в тексте.
 - 2. Предположите, зачем людям было необходимо вводить данные единицы измерения?
 - 3. Почему они вышли из употребления с введением метрической системымер?
 - 4. Заполните таблицу (табл. 10) на основе текста.

Таблица 10

Физическая величина	Название единицы измерения	Значение в СИ

3. Палаты царя Алкиноя

Вот какими блестящими красками описывает Гомер палаты царя Алкиноя:

Медные стены во внутренность шли от порога и были

Сверху увенчаны светлым карнизом лазоревой стали;

Вход затворен был дверями, литыми из чистого злата;

Притолки их из серебра утверждались на медном пороге;

Также и князь их серебряный был, а кольцо золотое.

Стены, кругом обегая во внутренность, шли от порога

Лавки богатой породы?

(Одиссея, VII, 86 в пер. В. А. Жуковского) [25, с. 58]

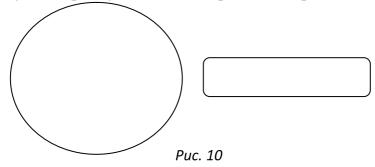
Найдите в тексте и выпишите названия металлов, которые использовались в отделке палат царя.

4. Всегда 12?

Слово «часы» появилось примерно 700 лет назад, в XIV веке. Это слово

произошло от латинского «clocca», что значит «звонок». Самые первые механические часы обладали лишь одной стрелкой, а циферблат был немецкий или же итальянский со шкалой 12 или 24 соответственно.

У английских фонарных часов чаще всего циферблат был кольцевой, прикреплённый к циферблатной плите. Также на этих циферблатах кроме 12 римских цифр была выгравирована шкала с 48 частями, которая делила интервал часа на четыре совершенно одинаковые части.



Puc. 9

В то время, когда появились маятниковые часы, вместе с ними пришла и минутная стрелка на циферблате, для которой специально изготовили минутную шкалу и расположили её на внешней окружности часовой шкалы. Для того, чтобы обозначить пятиминутные интервалы на шкале, сначала применяли арабские цифры, а позже интервалы стали обозначать обычными точками. Во второй половине XVIII века стали успешно применять и третью — секундную стрелку.

Таким образом, произошли значительные изменения от однострелочных часов до современных, в которых используются стрелки для обозначения часа, минуты и даже секунды [26].

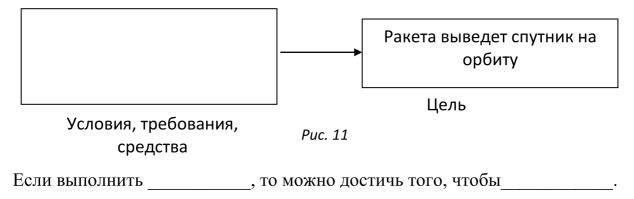
- 1. Объясните название текста с точки зрения его содержания?
- 2. Придумайте новое название для текста.
- 3. С чем связано появление минутной стрелки часов?
- 4. Сколько минут составляют три четверти часа?
- 5. Заполните циферблат старинных английских фонарных часов. Нарисуйте стрелку. Запишите время, которое она показывает с погрешностью.

6. В чем особенность старинных часов в Суздале (рис. 9)? Предложите инструкцию либо памятку к их современному использованию.

5. Высота

Наверное, самая знаменитая и известная стройка Востока — Вавилонская башня. Древние свидетельства подтверждают существование такой пирамиды, которая назвалась капищем Бела, или Ваала. Она состояла из восьми ярусов, имела 180 метров ширины в основании и на столько же поднимались в высоту [25, с. 39].

- 1. Измерьте высоту кабинета любыми измерительными приборами. Оцените, сколько таких «высот» поместилось бы в Вавилонской башне?
- 2. Составьте справочную таблицу о высотности архитектурных сооружений и, используя ресурсы сети Интернет, сравните Вавилонскую башню с современными небоскребами в Москва-Сити, Нью-Йорке, Дубае, Лондоне.


6. Тройка

Однажды Сергей Павлович Королёв пришел в агрегатно-сборочный цех, и разговор зашел о проблеме недостаточной мощности советских ракет. Один пожилой рабочий тогда и говорит:

- Сергей Павлович, а наши деды, когда не хватало силенки одной лошади, запрягали тройку, а то и более.
- Ты это очень верно заметил! Действительно, схема ракеты «Спутник» для первого искусственного спутника Земли была именно такой. В центре могучий «коренник», а по бокам четыре «пристяжных». Их так и прозвали «боковушками».

Фундаментальные идеи К. Э. Циолковского, народная мудрость и неутомимый интеллектуальный труд С. П. Королева позволили СССР запустить первый искусственный спутник Земли [28].

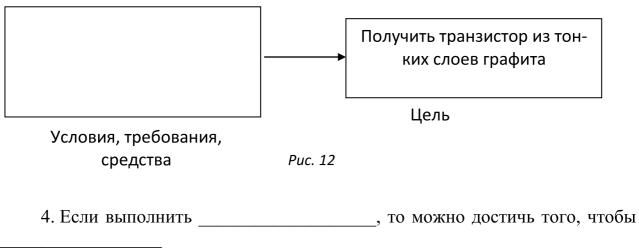
- 1. В чём состояла польза догадки рабочего для разрешения затруднений с мощностью ракет-носителей?
- 2. Сформулируйте гипотезу по форме (рис. 11):

- 3. Объясните связь «русской тройки» лошадей и ракеты для первого спутника, запущенного 4 октября 1957 года.
- 4. Приведите примеры изобретений, основанных на народной наблюдательности.

Раздел 2. Первоначальные сведения о строении вещества

7. Графен

Читайте с остановками в местах, особо вас заинтересовавших, специальным приемом: либо подчеркиванием слов, либо выделением цветом.


Нобелевскую премию по физике 2010 года присудили за исследования графена — ультратонкого материала, проявляющего необычные и одновременно весьма полезные свойства. Его открытие сулит не только новые технологии (аккумуляторы для электромобилей, сбор радиоактивных отходов, инновации в медицине), но и развитие фундаментальной физики, результатом чего могут стать новые знания о строении материи. Лауреатами Нобелевской премии по

физике нынешнего года стали Андрей Гейм и Константин Новосёлов — профессора Манчестерского университета, выпускники Московского физикотехнического института. Графен, материал толщиной всего в один атом, построен из «сетки» атомов углерода, уложенных, подобно пчелиным сотам, в ячейки шестиугольной формы.

Но как смогли получить графен? Это был забавный случай. Ученые в лаборатории тогда не занимались графеном. Были разные попытки — полировать графит для получения транзистора, они не прошли, но идея, что можно попытаться сделать транзистор из тонких слоев графита, — осталась. В то время с ними работал Олег Игоревич Шкрялевский, он делал туннельный микроскоп. И одним из главных объектов для таких микроскопов является поверхность графита, которая очищается с помощью скотча. Берется скотч, прикладывается к графиту. Верхние слои отрываются, скотч выбрасывается, а чистый кристалл графита вставляется в микроскоп. Это стандартная практика. Но когда это увидели Гейм и Новосёлов, то они подняли этот скотч, который был выброшен, руками сняли с него чешуйки графита перенести на правильную подложку и приделали руками контакты. Первые же образцы заработали! Это, конечно, был не графен, а тонкий слой графита, но он работал как транзистор. И было понятно, что это стоит развивать. Можно сказать, ведь до этого они проводили совсем другие эксперименты.

Как тут не вспомнить: «Всё гениальное – просто»! Сейчас такой способ называется «микромеханическим расслоением», он позволяет получать наиболее качественные образцы графена размером до 100 микрон [29].

- 1. Что такое графен?
- 2. В каких сферах может применяться графен?
- 3. Сформулируйте гипотезу по форме (рис. 12):

^{5.} Для каких целей используют туннельный микроскоп?

^{6.} Составьте пять разных вопросов по тексту «Графен», пусть сосед по парте на них ответит.

8. Чудо или кража?

Рука золотой статуи в древнегреческом храме, которую целовали прихожане, за десятки лет заметно похудела. Священники в панике. Кто украл золото? Или это чудо, знамение древнего божества?

В наши дни такое тоже возможно! Например, в Москве на станции метро «Площадь Революции» располагается знаменитая статуя пограничника с собакой (рис. 13). По одной из версий, прототипом пограничника был Никита Федорович Карацупа — самый известный пограничник СССР. Его имя гремело в те времена на весь Советский Союз. Известен тем, что за 20 лет службы на границе задержал 338 нарушителей и уничтожил

Puc. 13

129 шпионов и диверсантов, не сложивших оружия. Своего первого друга — сторожевого пса Индуса — Карацупа нашел, вырастил и воспитал сам еще в пограничной школе. За достойную службу друзей увековечили в виде статуи в метро. Каждый третий проходящий мимо статуи трёт нос или лапу собаке. Поверье в том, что повезет, например успешно сдашь экзамен, если потрёшь нос собаке, пошло от студентов. В разгар сессии, чтобы погладить собачку, порой выстраивается целая очередь. Таким образом, морда собаки побелела и вытерлась [30].

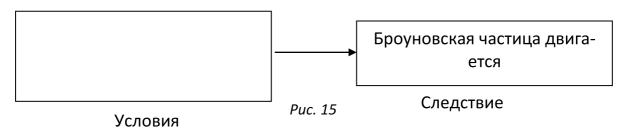
- 1. Объясните на основе гипотезы Демокрита о существовании мельчайших частиц вещества, что же произошло в обоих случаях?
- 2. Заполните пропуски в схеме черного ящика. На основе своих знаний заполните содержимое самого черного ящика (рис. 14).

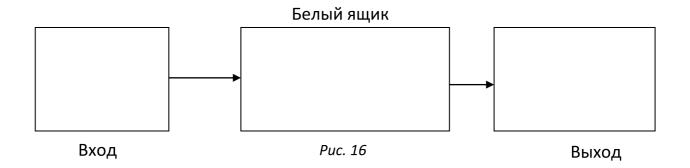
3. Почему собаке и пограничнику поставили памятник?

9. Танец под микроскопом

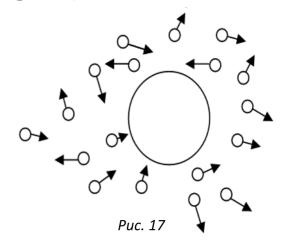
До и после чтения текста заполните табл. 11.

Таблица 11


Знаю	Хочу узнать	Узнал	Что осталось нераскрытым?


В начале XIX века с помощью микроскопа можно было получить значительное увеличение, и поле зрения при этом оставалось чистым, лишенным каких-либо дефектов и искажений.

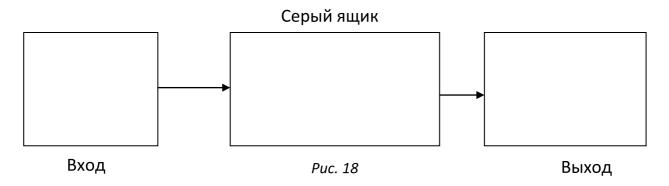
В такой усовершенствованный микроскоп английский ботаник Роберт Броун решил поместить не лист растения или срез дерева, а... крохотную каплю воды с размешанной в ней пыльцой растений. Взглянув в микроскоп, Броун был поражен: пыльца не растворилась в воде, а разбилась на мельчайшие шарики, и эти шарики двигались в каком-то фантастическом танце! Длительные наблюдения убедили Броуна в том, что движения частичек пыльцы вызваны не «подводными течениями» в капле жидкости и не легкими сотрясениями подставки микроскопа. Нет, каждая частичка двигалась совершенно обособленно от других, во внезапных передвижениях частичек пыльцы не было никакой согласованности. Неведомые и непонятные Броуну силы заставляли их так странно себя вести... Многие ученые повторяли опыты Броуна с краской, крупинками золота в жидкости и наблюдали ту же самую картину в микроскоп. Таинственные перемещения броуновских частиц (пыльцы, краски, золота) в капле жидкости получили название броуновского движения.


Но дело в том, что танец был вовсе не самостоятельным. Броуновские частицы были в сотни раз больше молекул жидкости, в которую их поместили. Молекулы жидкости находятся в постоянном хаотическом движении и дают толчок то с одной, то с другой стороны, и броуновская частица буквально мечется в разные стороны в поле зрения микроскопа. Таким образом, броуновские частички воспроизводят хаотическое движение самих молекул, только движутся они значительно медленнее молекул благодаря своей сравнительно большой массе [27].

- 1. Почему именно в начале XIX века стало возможным наблюдать движение броуновских частиц?
- 2. Почему движение броуновских частиц не было самостоятельным?
- 3. Сформулируйте гипотезу по форме (рис. 15):

- 4. Заполните пропуски в схеме белого ящика (рис. 16).
- 5. На схеме (рис. 17) модельно изображены частица пыльцы и молекулы жидкости, которые её окружают. Стрелками указаны направления движения молекул жидкости в некоторый момент времени.
- а) Закрасьте синим цветом те объекты опыта, которые можно наблюдать в любительский микроскоп.
- б) Закрасьте красным цветом те молекулы жидкости, которые в ближайшее время столкнутся с частицей пыльцы.

- в) Укажите наиболее возможное направление движения пыльцы в следующий после столкновения момент времени [31, с. 13].
 - 6. Выделите значимую информацию в тексте.



10. Керосин

В повести Дж. К. Джерома «Трое в лодке, не считая собаки» есть занятная история: «Однажды мы захватили в дорогу керосинку, но это было первый и последний раз. Целую неделю мы провели, словно в керосиновой лавке. Керосин просачивался. Я не знаю, что еще обладает такой способностью просачиваться, как керосин. Мы держали его на носу лодки, и оттуда он просочился до самого руля, пропитав по пути всю лодку и её содержимое, и расплылся по реке, въелся в пейзаж, и отравил воздух. Дул то западно-керосиновый ветер, то восточно-керосиновый ветер, северо-керосиновый TO ветер, то ЮГОкеросиновый ветер; но приходил ли он с ледяных просторов Арктики или зарождался в знойных песках пустынь, он был одинаково насыщен благоуханием керосина. И керосин просачивался до самого неба и губил солнечные закаты» [32, c. 47].

1. Почему друзья больше никогда не стали брать керосин с собой в путешествия?

- 2. О каких физических явлениях идет речь в тексте повести?
- 3. Заполните схему серого ящика для текста (рис. 18):

4. Выделите главные и второстепенные причины, по которым главные герои не будут брать керосин с собой в путешествие.

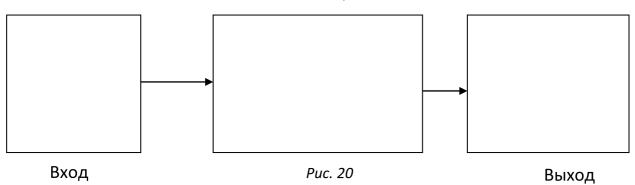
11. Диффузия

О каком физическом явлении идет речь? Опишите явление по паспорту явления.

- 1. В 1638 году посол Василий Старков привёз в подарок царю Михаилу Фёдоровичу от монгольского Алтын-хана 4 пуда сушёных листьев. Это растение очень понравилось москвичам, и они его с удовольствием до сих пор употребляют. Это был чай, процесс заваривания ...
- 3. «Был у царя умный советник Аяз, которого он очень уважал. Как обычно бывает в таких случаях, у Аяза были враги, которые его оклеветали перед царем, и тот, послушав их, заключил его в тюрьму. Когда к Аязу пришла жена, он велел ей поймать большого муравья, привязать к его лапке крепкую нитку длиной сорок метров, к свободному концу её привязать верёвку такой же длину и пустить муравья по наружной стене тюрьмы в указанном месте. Как сказал Аяз, так жена и сделала. Сам же Аяз накрошил на окно камеры сахара, и муравей по запаху сахара добрался до камеры, где сидел Аяз». Именно это явление спасло Аяза и помогло муравью найти камеру [33].

12. Твердое молоко

Известный советский фотограф Яков Рюмкин много путешествовал в 50-е годы. В Якутии на колхозном рынке он сделал интересную фотографию (рис. 19). Температура воздуха была ниже —53 °C. На прилавках бойко продавали замороженное коровье молоко в виде больших плошек или куличей. Его заворачивали в бумагу и клали в сумки, не боясь, что оно растечется или расплещется.


Puc. 19

И действительно, мясо, овощи мороза не боятся, их заворачивали в меха, а вот молоком торговали в твердом виде. Эта идея принадлежит коренным жителям Якутии, они так вести рынок привыкли издавна. Якуты шутят: «Зима у нас продолжается только 9 месяцев в году, а остальное время — все лето, лето, лето». Но оказывается, это не только в Сибири возможно [34].

В сильную стужу в Центральной России морозили в сковородах и мисках козье и коровье молоко, а потом скоблили ложкой в стружку и ели сразу с блинами.

- 1. Якуты шутят на базаре: «— Что, парного опять нет? Нет! Есть только замороженное!» Объясните почему?
 - 2. Заполните схему белый ящик (рис. 20):

Белый ящик

- 4. Какой формы твердое молоко удобнее транспортировать в машине, на телеге?
- 5. Попробуйте в сильные холода заморозить стакан с молоком. Полностью ли замерзнет молоко? Как будет зависеть время отвердевания молока от его жирности?
- 6. Почему молоко в жидком виде транспортируют в цилиндрических цистернах?
- 7. Оцените возможные достоинства и недостатки транспортировки и хранения молока в разных состояниях: жидком и твердом (табл. 12).

	Молоко в жидком виде	Молоко в твердом состоянии
Достоинства		
Недостатки		

13. Народные мудрости

Прочитайте текст. Попытайтесь объяснить явление. Сталкивались ли вы с ним? Опишите физическое явление по паспорту (табл. 13).

Дуновение Мороза-Трескуна производит сильную стужу, иней. Морозко зимою бегает по полям и улицам и стучит: от его стука начинаются трескучие морозы и оковываются реки льдами. Если ударит он в угол избы, то непременно бревно треснет! [35, с. 103]

Объясните пословицы и поговорки с точки зрения физики:

- 1. Золото в огне не плавится.
- 2. Всякое случается, иногда и камень потом обливается.
- 3. Низкой горе снега не знать, низкому человеку стыда.
- 4. Хорошее железо не идет на гвозди.
- 5. Куй железо пока горячо.
- 6. Тверд как алмаз.
- 7. Много снега много хлеба.
- 8. В воде ухватиться не за что.
- 9. Много с тех пор воды утекло.
- 10. Мокрый дождя не боится.
- 11. Их водой не разольешь.
- 12. Вилами по воде писано.
- 13. Решетом воду не черпают.
- 14. Под лежачий камень вода не бежит.
- 15. Воду в ступе толочь, вода будет.
- 16. У воды гибкая спина.
- 17. Туман съедает снег.
- 18. У каждого облака есть серебряная подкладка.
- 19. Ветра в рукавицу не поймаешь.

Название	
Описание	
Объяснение явления	
Примеры в быту и технике	

Запишите номера пословиц в табл. 14 в зависимости от свойств, которые они описывают:

Таблица 14

Твердое тело	Жидкость	Газ	

14. Метрология и Интернет

Объясните с точки зрения физики современные пословицы и их переработки:

- Свои ошибки можно не исправлять, достаточно их учесть.
- Рыбак это прирожденный метролог, измеряющий свой улов вручную.
- Погрешность это качественная мера нашего сомнения.
- Любить без меры неметрологично.
- Фунт лиха по весу равен фунту изюма.
- Истина в большом числе измерений (стремящимся к бесконечности).
- Русские «метрологические» пословицы, переведенные по системе СИ, будут звучать так: «проглотил 71,1 сантиметра», «от горшка 8,8 сантиметра», «1,26 метра во лбу».
- Любая наука начинается с измерений, а метрология наука об измерениях, следовательно, метрология это наука всех наук.
 - Гиря прибор для измерения количества раз одной или двумя руками.
 - Единица измерения салата оливье один тазик [36].

Раздел 3. Взаимодействие тел

15. Бездонный сосуд

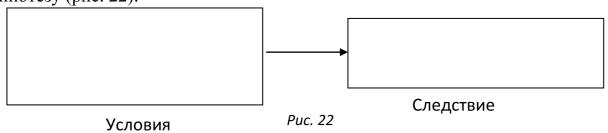
Во время чтения делайте отметки по правилу:

V – я это знаю;

- + это новая информация для меня;
- -- я думал по-другому, это противоречит тому, что я знал;
- ? это мне непонятно, нужны объяснения, уточнения.

В наказание за своё злодеяние Данаиды должны наполнять водой громадный сосуд (рис. 21), не имеющий дна. Вечно носят они воду, черпая её в подземной реке, и выливают в сосуд. Вот, кажется, уже полон сосуд, но вытекает из него вода, и снова он пуст.

Puc. 21

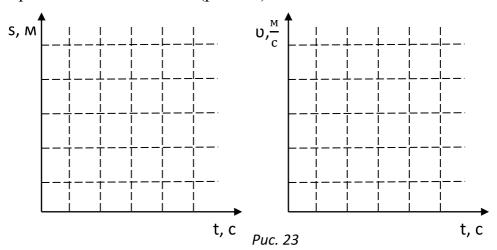

Данаиды не знают усталости. Кувшин, с помощью которого они наполняют бездонный сосуд, имеет объём 3 л. Расстояние от бездонного сосуда до реки 500 м. Какой объем воды каждая девушка выльет в бездонный сосуд за сутки, если средняя скорость движения человека 5 км/ч? [37, с. 100]

16. Опасные гонки

Самые большие перегрузки довелось пережить гонщику Дэвиду Перли в июле 1973 года. Во время гонки произошла катастрофа, и Перли пришлось вынести уменьшение скорости с 173 км/ч до нуля на отрезке пути длиной всего 66 см. Он получил 29 переломов и 3 вывиха, а его сердце останавливалось 6 раз [38, с. 84].

1. Как сказывается резкое изменение скорости на человеке? Сформулируйте гипотезу (рис. 22):

2. Представьте ситуацию графически, укажите направление скорости, изменение модуля скорости, путь.



17. Николаевская дорога

В 1836 году начали строить первую в России железную дорогу. В этом же году в сообщении газеты «Северная пчела» о закупленных для этого проекта локомотивах впервые появилось слово «паровоз». В 1837 году дорога соедини-

ла Петербург с Царским Селом (город Пушкин) и городом Павловском. Первые пассажиры отмечали, что «сухопутный корабль летит от Петербурга до Царского Села (20 верст) едва полчаса». Вычислите скорость первых поездов, зная, что верста равна 1067 м [39, с. 86].

- 1. Какова была скорость первых поездов?
- 2. Почему первые пассажиры отмечали быстроходные характеристики первых поездов?
- 3. Какое время необходимо современному поезду с электровозом, идущему со скоростью $110\frac{\kappa_{\rm M}}{\rm q}$, на этот путь?
- 4. Современный скоростной поезд «Сапсан» двигался 30 минут со скоростью $180 \frac{\kappa_M}{q}$, а следующий час со скоростью $230 \frac{\kappa_M}{q}$. Какова средняя скорость «Сапсана»?
- 5. Изобразите графики зависимости s(t) и v(t) для первого николаевского поезда, электропоезда и «Сапсана» (рис. 23).

6. Каково было расстояние между рельсами на николаевской железной дороге в 1837 году? Какое расстояние между рельсами сейчас в России и в Европе?

18. Японцы знают толк в скорости

В 1964 году была открыта первая «выделенная» скоростная линия Shinkansen, которая соединила японские города Токио и Осаку. Сейчас средняя скорость на ней составляет 206 км/ч. Путь длиной 515,4 км занимает всего 2,5 часа против 4 часов в 1964 году.

В 2004 был запущен Shanghai Maglev Train на магнитной подушке от аэропорта Шанхая на линии протяженностью 30 км. Состав пролетает их (буквально) за 7 минут 18 секунд.

В 2007 году самым быстрым поездом стал модифицированный специально под рекордный заезд французский TGV, разогнавшийся до 574,8 км/ч [40].

1. С какой скоростью двигались первые скоростные поезда на «выделенной» линии Токио – Осака?

- 2. Во сколько раз сейчас поезда движутся быстрее?
- 3. С какой скоростью двигается поезд на магнитной подушке до аэропорта Шанхая?
 - 4. За какое примерное время французский TGV смог бы проехать 120 км?
- 5. Внесите информацию о скоростях в таблицу скоростей и сравните их друг с другом.
 - 6. Во сколько раз сейчас поезда движутся быстрее?

19. Земля – остановись!

Читайте с остановками в местах, особо вас заинтересовавших, специальным приемом: подчеркиванием слов либо выделением цветом.

У известного английского писателя Герберта Уэллса есть фантастический рассказ «Человек, способный творить чудеса». Недалекий молодой человек Джордж Фотерингей оказался обладателем удивительного дара: стоило ему высказать какое-нибудь пожелание, оно тут же исполнялось. Желая продлить ночь, он приказал: «Земля — остановись!». «В следующее мгновение мистер Фотерингей уже летел вверх тормашками в воздушном пространстве с огромной скоростью. Огромная масса металла и каменной кладки, остатками формы напоминавшая башню с часами, что стояла посреди рыночной площади, рухнула на землю рядом с ним и, как взорвавшаяся бомба, разлетелась на обломки, кирпичи и куски цемента. Раздался оглушительный грохот, в сравнении с которым всё, что мистеру Фотерингею приходилось слышать раньше, могло бы показаться лишь звуком оседающей пыли, а за ним, постепенно угасая, последовал еще ряд раскатов уже меньшей силы.

Повсюду, и на земле, и в небесах, свирепствовал такой мощный ураган, что мистер Фотерингей даже не мог приподнять голову, чтобы осмотреться. Некоторое время он с трудом переводил дыхание и был настолько ошеломлен, что не понимал, ни где он, ни что случилось. Дело в том, что, когда мистер Фотерингей остановил вращение Земли, он не сделал никаких распоряжений относительно всего того, что на ней находится. Между тем Земля вертится с такой быстротой, что несется у экватора со скоростью более тысячи миль в час, а в наших широтах — лишь вполовину медленнее. Но когда Земля остановилась, и весь город, и всё и вся продолжали движение вперед со скоростью более чем восемьсот километров в час, то есть быстрее, чем если бы ими выстрелили из пушки. И в результате все люди, все живые существа, все дома, все деревья, весь знакомый нам мир — все было сметено, разбито и уничтожено. Вот так» [41].

- 1. Что было причиной страшного урагана?
- 2. Выпишите следствия неосмотрительного желания «Земля остановись!»
- 3. Заполните схему серый ящик по тексту (рис. 24):

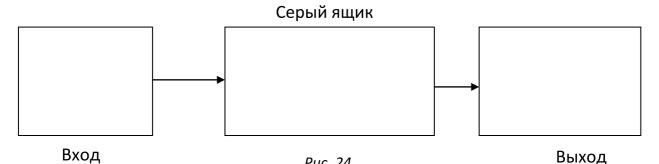


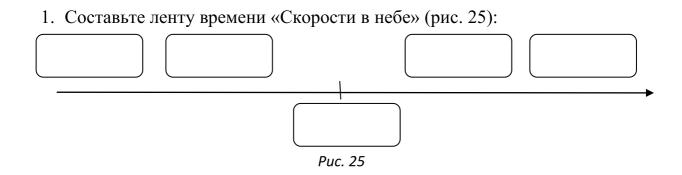
Рис. 24
4. Сравните скорость движения города после остановки Земли и скорость вылета ядра из пушки 477 м/с. Правда ли, что в рассказе город двигался быстрее?

5. Составьте вопросы к тексту по «Ромашке Блума» (табл. 15):

Таблица 15

Шесть типов вопросов

Типы вопросов:	Вопросы:
1. Простые вопросы.	Что? Когда? Как?
2. Уточняющие вопросы.	Правильно ли понял?
3. Вопросы-интерпретации.	Почему?
4. Оценивающие вопросы.	Что хорошо? Что плохо?
5. Творческие вопросы.	Что было бы?
6. Практические вопросы.	Где используется?


20. Скорости на заре авиации

Работа в группе (4 человека): каждый придумывает вопрос и задает его участнику группы, остальные проверяют правильность ответа. Побеждает пара, в которой будет последний вопрос и ответ.

В 1903 году американец Орвилл Райт совершил первый пилотируемый полет на самолете с 12-сильным бензиновым мотором, преодолев по воздуху 37 м за 12 секунд. К концу дня его брат Уилбер Райт увеличил время и дистанцию до 59 секунд и 260 м. Через шесть лет Луи Блерио на своем самолете Вlériot XI впервые перелетел пролив Ла-Манш, преодолев 38 км. Еще через месяц этот самолет установил мировой рекорд скорости — 74,318 км/ч. Собственно говоря, с этого началась история авиации как вида транспорта.

Самый первый гражданский самолёт «Илья Муромец» имел скорость полёта всего лишь 105 км/ч, этот предел сегодня легко может быть преодолён на обычном автомобиле, а в ряде случаев и на международном автобусе, а посему комфортным такое перемещение никак не назовёшь.

Что касается обычных пассажирских самолётов, то их скорость полёта уже превысила рубеж в 500 км/ч и является далеко не пределом, например «Сухой Суперджет-100» эксплуатируется на авиалиниях с малой загрузкой. Салон может разместить 98 человек, а крейсерская скорость имеет показатель в 830 км/ч [42].

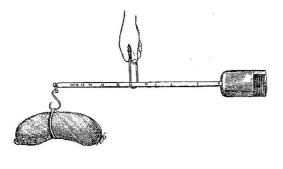
- 2. Переведите все скорости в СИ.
- 3. Для физической величины скорость заполните паспорт (табл. 16).

Таблица 16

Физическая величина, название	
Характеризует	
Обозначение	
Единицы в СИ	
Формула	

21. Весы

Во время чтения делайте отметки по правилу:


V – я это знаю;

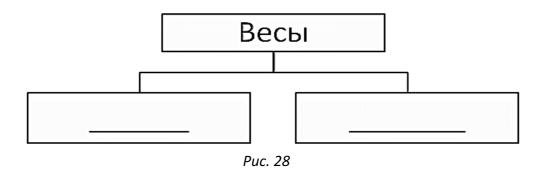
- + это новая информация для меня;
- --я думал по-другому, это противоречит тому, что я знал;
- ? это мне непонятно, нужны объяснения, уточнения.

Весы — один из древнейших приборов, они возникли и совершенствовались с развитием торговли, производства и науки. Вся история развития общества и торговли требовала, чтобы был изобретён прибор, способный взвешивать товар. К сожалению, история не сохранила имя изобретателя первых весов.

Первые простейшие весы в виде **равноплечего** коромысла с подвешенными чашами стали применяться в Древнем Вавилоне, а много позже в Египте за две тысячи лет до нашей эры. Все их отлично знают: коромысло с подвешенными чашами, на одну кладётся товар, на другую гири. Даже согласно древнеегипетской «Книге мертвых», Анубис на входе в подземное царство взвешивает сердце всякого умершего на особых весах, где в качестве гири выступает богиня правосудия Маат.

Позже появились **неравноплечие** весы с передвижной гирей — безмен (рис. 26). Например, русский безмен — металлический стержень с постоянным грузом на одном конце и крючком или чашкой для взвешиваемого предмета на другом (рис. 27).

Puc. 26


На Руси вплоть до XV века заботливой хранительницей мер и весов была Церковь. В монастырях и храмах появились первые смотрители за правильностью измерений. Царь Иван Грозный вообще запретил торговцам иметь собственные гири и весы. Разрешалось пользоваться только «государственными». Царь Федор Алексеевич обязал

проверять существующие меры с клеймлением их «орлёной печатью». Петр I своим указом ввел их обязательную проверку два раза в год. И лишь в 1736 году в России были созданы образцовые меры длины, веса (массы) и других измерений, с которыми обязательно сравнивали используемые в торговле гири и прочие меры [43].

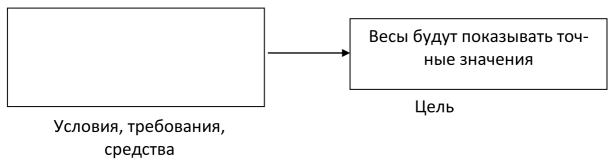


Рис. 27

- 1. Для каких целей создавались первые весы?
- 2. О каких видах весов идет речь в тексте?
- 3. Зачем необходимо следить за правильностью измерений на весах (рис. 28)?

4. Сформулируйте гипотезу по тексту, в которой основной целью будет соблюдение точности измерений (рис. 29):

Puc. 29